Table of Contents
Toggle
VECTOR (From R to the point) |
VECTOR coordinates (from the point π (12,7) to each point) |
Rotation of 90Β° (π₯,π¦) β(βπ¦,π₯) |
Final actual image coordinates |
π π΄Μ Μ Μ Μ |
(0,5) |
(β5,0) |
π΄β² (7,7) |
π π΅Μ Μ Μ Μ |
(3,5) |
(β5,3) |
π΅β² (7,10) |
π πΆΜ Μ Μ Μ |
(5,5) |
(β5,5) |
πΆβ² (7,12) |
π π·Μ Μ Μ Μ |
(7,3) |
(β3,7) |
π·β² (9 ,14) |
π πΈΜ Μ Μ Μ |
(7,7) |
(β7,7) |
πΈβ² (5,14) |
π πΉΜ Μ Μ Μ |
(8,6) |
(β6,8) |
πΉβ² (6,15) |
π πΊΜ Μ Μ Μ |
(5,8) |
(β8,5) |
πΊβ² (4,12) |
π π»Μ Μ Μ Μ |
(2,9) |
(β9,2) |
π»β² (3,9) |
First, rewrite the equation in the form:
The equation given is:
Multiply both sides by 2:
Rewrite in standard form (as above):
In the equation above (in blue), we have:
To find the
-value of the reflected point of each given point, we use the following equations:
Substituting the values of π΄ = 1, π΅ = β2, πΆ = 32, we get:
We now find the reflected point for each point on the lizard:
Letβs look at the first example: Point π΄(12,12). This point has the coordinates
π₯ value of the reflected point |
π¦ value of the reflected point |
Β β β β β Β
Β
Β β β β β Β
Β
So the coordinates of π΄ are (12,12) and the coordinates of π΄β are (4,28)
Letβs now perform the same operations on all the other points