Lizard – Rotation and Reflection

A
1) Rotate the lizard about the point 𝑅 (12,7) through 90Β°.

VECTOR (From R to the point)

VECTOR coordinates (from the point 𝑅 (12,7) to each point)

Rotation of 90Β°

(π‘₯,𝑦) β†’(βˆ’π‘¦,π‘₯)

Final actual image coordinates

𝑅𝐴̅̅̅̅

(0,5)

(βˆ’5,0)

𝐴′ (7,7)

𝑅𝐡̅̅̅̅

(3,5)

(βˆ’5,3)

𝐡′ (7,10)

𝑅𝐢̅̅̅̅

(5,5)

(βˆ’5,5)

𝐢′ (7,12)

𝑅𝐷̅̅̅̅

(7,3)

(βˆ’3,7)

𝐷′ (9 ,14)

𝑅𝐸̅̅̅̅

(7,7)

(βˆ’7,7)

𝐸′ (5,14)

𝑅𝐹̅̅̅̅

(8,6)

(βˆ’6,8)

𝐹′ (6,15)

𝑅𝐺̅̅̅̅

(5,8)

(βˆ’8,5)

𝐺′ (4,12)

𝑅𝐻̅̅̅̅

(2,9)

(βˆ’9,2)

𝐻′ (3,9)

1) Rotate the lizard about the point 𝑅 (12,7) through 90Β°.
2) Reflect the lizard across the line

y=12x+16y = \frac{1}{2}x + 16

Β 

First, rewrite the equation in the form:

Ax1+By1+C=0

The equation given is:

y=12x+16y = \frac{1}{2}x + 16

Multiply both sides by 2:

2y=x+322y = x + 32

Rewrite in standard form (as above):

x – 2y + 32 = 0

In the equation above (in blue), we have:

A=1,B=βˆ’2,C=32A = 1, \quad B = -2, \quad C = 32

To find the

xx

-value of the reflected point of each given point, we use the following equations:


1) Rotate the lizard about the point 𝑅 (12,7) through 90Β°.

Substituting the values of 𝐴 = 1, 𝐡 = βˆ’2, 𝐢 = 32, we get:

1) Rotate the lizard about the point 𝑅 (12,7) through 90Β°.

We now find the reflected point for each point on the lizard:

Let’s look at the first example: Point 𝐴(12,12). This point has the coordinates

π‘₯ value of the reflected point

𝑦 value of the reflected point

xβˆ’12=βˆ’2(1(12)βˆ’2(12)+32)1+4x – 12 = \frac{-2(1(12) – 2(12) + 32)}{1 + 4} xβˆ’12=βˆ’2(12βˆ’24+32)5x – 12 = \frac{-2(12 – 24 + 32)}{5} xβˆ’12=βˆ’2(20)5x – 12 = \frac{-2(20)}{5} xβˆ’12=βˆ’8x – 12 = -8Β 
x=4x = 4Β 

yβˆ’12=βˆ’2(1(12)βˆ’2(12)+32)βˆ’2(1+4)y – 12 = \frac{-2(1(12) – 2(12) + 32)}{-2(1 + 4)} yβˆ’12=βˆ’2(12βˆ’24+32)βˆ’2(5)y – 12 = \frac{-2(12 – 24 + 32)}{-2(5)} yβˆ’12=βˆ’2(20)βˆ’2(5)y – 12 = \frac{-2(20)}{-2(5)} yβˆ’12=βˆ’8y – 12 = -8Β 
y=28y = 28Β 

So the coordinates of 𝐴 are (12,12) and the coordinates of 𝐴’ are (4,28)

Let’s now perform the same operations on all the other points


Leave a comment
Your email address will not be published. Required fields are marked *