Lizard – Rotation and Reflection

A
1) Rotate the lizard about the point 𝑅 (12,7) through 90°.

VECTOR (From R to the point)

VECTOR coordinates (from the point 𝑅 (12,7) to each point)

Rotation of 90°

(𝑥,𝑦) →(−𝑦,𝑥)

Final actual image coordinates

𝑅𝐴̅̅̅̅

(0,5)

(−5,0)

𝐴′ (7,7)

𝑅𝐵̅̅̅̅

(3,5)

(−5,3)

𝐵′ (7,10)

𝑅𝐶̅̅̅̅

(5,5)

(−5,5)

𝐶′ (7,12)

𝑅𝐷̅̅̅̅

(7,3)

(−3,7)

𝐷′ (9 ,14)

𝑅𝐸̅̅̅̅

(7,7)

(−7,7)

𝐸′ (5,14)

𝑅𝐹̅̅̅̅

(8,6)

(−6,8)

𝐹′ (6,15)

𝑅𝐺̅̅̅̅

(5,8)

(−8,5)

𝐺′ (4,12)

𝑅𝐻̅̅̅̅

(2,9)

(−9,2)

𝐻′ (3,9)

1) Rotate the lizard about the point 𝑅 (12,7) through 90°.
2) Reflect the lizard across the line

y=12x+16y = \frac{1}{2}x + 16

 

First, rewrite the equation in the form:

Ax1+By1+C=0

The equation given is:

y=12x+16y = \frac{1}{2}x + 16

Multiply both sides by 2:

2y=x+322y = x + 32

Rewrite in standard form (as above):

x – 2y + 32 = 0

In the equation above (in blue), we have:

A=1,B=2,C=32A = 1, \quad B = -2, \quad C = 32

To find the

xx

-value of the reflected point of each given point, we use the following equations:


1) Rotate the lizard about the point 𝑅 (12,7) through 90°.

Substituting the values of 𝐴 = 1, 𝐵 = −2, 𝐶 = 32, we get:

1) Rotate the lizard about the point 𝑅 (12,7) through 90°.

We now find the reflected point for each point on the lizard:

Let’s look at the first example: Point 𝐴(12,12). This point has the coordinates

𝑥 value of the reflected point

𝑦 value of the reflected point

x12=2(1(12)2(12)+32)1+4x – 12 = \frac{-2(1(12) – 2(12) + 32)}{1 + 4} x12=2(1224+32)5x – 12 = \frac{-2(12 – 24 + 32)}{5} x12=2(20)5x – 12 = \frac{-2(20)}{5} x12=8x – 12 = -8 
x=4x = 4 

y12=2(1(12)2(12)+32)2(1+4)y – 12 = \frac{-2(1(12) – 2(12) + 32)}{-2(1 + 4)} y12=2(1224+32)2(5)y – 12 = \frac{-2(12 – 24 + 32)}{-2(5)} y12=2(20)2(5)y – 12 = \frac{-2(20)}{-2(5)} y12=8y – 12 = -8 
y=28y = 28 

So the coordinates of 𝐴 are (12,12) and the coordinates of 𝐴’ are (4,28)

Let’s now perform the same operations on all the other points


Leave a comment
Your email address will not be published. Required fields are marked *