Table of Contents
ToggleStandard form (sometimes called scientific notation or standard index form) gives us a way of writing very big and very small numbers using powers of 10.
Some numbers are too big or too small to write easily or for your calculator to display at all:
Writing very big or very small numbers in standard form allows us to:
Exam questions could ask for your answer to be written in standard form.
In standard form, numbers are always written in the form $ a \times 10^{k} $ where $ a $ and $ k $ satisfy the following conditions:
aEn
. For example,
$
2.1 \times 10^{-5}
$
will be displayed as 2.1E - 5
.
Calculate each of the following, giving your answer in the form \(a \times 10^k\), where $ 1 \le a < 10 $ and $ k \in \mathbb{Z} $.
Using GDC (scientific mode):
Input directly into GDC as ordinary numbers:
$$
3780 \times 200 = 7.56 \times 10^5.
$$
Your GDC will automatically give the answer in standard form (or something like 7.56E5
).
Without GDC:
Calculate the value in ordinary form:
$$
3780 \times 200 = 756000.
$$
Convert this to standard form:
$$
756000 = 7.56 \times 10^5.
$$
$\displaystyle 7.56 \times 10^5$
Using GDC (scientific mode):
$$
(7 \times 10^5) - (5 \times 10^4) = 6.5 \times 10^5.
$$
The GDC display might show 6.5E5
.
Without GDC:
Convert to ordinary numbers:
$$
7 \times 10^5 = 700000,\quad 5 \times 10^4 = 50000.
$$
Subtract:
$$
700000 - 50000 = 650000.
$$
Convert to standard form:
$$
650000 = 6.5 \times 10^5.
$$
$\displaystyle 6.5 \times 10^5$
Using GDC (scientific mode):
$$
(3.6 \times 10^{-3})\times(1.1 \times 10^{-5}) = 3.96 \times 10^{-8}.
$$
Without GDC:
Multiply the number parts:
$
3.6 \times 1.1 = 3.96.
$
Add the exponents of 10:
$
(-3) + (-5) = -8.
$
So the product is:
$$
3.96 \times 10^{-8}.
$$
$\displaystyle 3.96 \times 10^{-8}$
Using GDC (scientific mode):
$$
543000 \times 4500 \approx 2.4435 \times 10^9.
$$
Your GDC may display something like 2.4435E9
.
Without GDC:
In ordinary form:
$
543000 \times 4500 = 543000 \times (45 \times 100)
= (543000 \times 45) \times 100.
$
Calculate:
$
543000 \times 45 = 24{,}435{,}000,\quad
24{,}435{,}000 \times 100 = 2{,}443{,}500{,}000.
$
Convert to standard form:
$$
2{,}443{,}500{,}000 = 2.4435 \times 10^9.
$$
$\displaystyle 2.4435 \times 10^9$
Using GDC (scientific mode):
$$
(1.2 \times 10^6) + (7.8 \times 10^5) = 1.98 \times 10^6.
$$
The GDC might show 1.98E6
.
Without GDC:
Notice
$
(7.8 \times 10^5) = 0.78 \times 10^6.
$
Therefore:
$$
(1.2 \times 10^6) + (0.78 \times 10^6)
= (1.2 + 0.78) \times 10^6
= 1.98 \times 10^6.
$$
$\displaystyle 1.98 \times 10^6$
Using GDC (scientific mode):
$$
\frac{4.2 \times 10^7}{2.1 \times 10^3} = 2 \times 10^4.
$$
Without GDC:
Divide the number parts:
$
\frac{4.2}{2.1} = 2.
$
Subtract exponents of 10:
$
10^7 \div 10^3 = 10^{7-3} = 10^4.
$
So the result is:
$$
2 \times 10^4.
$$
$\displaystyle 2 \times 10^4$
Using GDC (scientific mode):
$$
(9.6 \times 10^{-4}) - (3.4 \times 10^{-5}) = 9.26 \times 10^{-4}.
$$
Without GDC:
Rewrite with the same power of 10. Notice:
$$
9.6 \times 10^{-4} = 96 \times 10^{-5}.
$$
Then:
$$
(96 \times 10^{-5}) - (3.4 \times 10^{-5})
= (96 - 3.4) \times 10^{-5}
= 92.6 \times 10^{-5}.
$$
Finally,
$
92.6 \times 10^{-5} = 9.26 \times 10^{-4}.
$
$\displaystyle 9.26 \times 10^{-4}$
Using GDC (scientific mode):
$$
0.045 \div 500 = 9 \times 10^{-5}.
$$
Without GDC:
$
0.045 \div 500 = 0.045 \div (5 \times 10^2).
$
First divide by 5:
$
0.045 \div 5 = 0.009.
$
Then divide by
$
10^2 = 100:
$
$$
0.009 \div 100 = 0.00009 = 9 \times 10^{-5}.
$$
$\displaystyle 9 \times 10^{-5}$
Using GDC (scientific mode):
$$
1230000000 \times 0.00049 \approx 6.027 \times 10^5.
$$
Without GDC:
Rewrite in standard form first:
$
1230000000 = 1.23 \times 10^9,\quad
0.00049 = 4.9 \times 10^{-4}.
$
Multiply the number parts:
$
1.23 \times 4.9 = 6.027.
$
Add the powers of 10:
$
10^9 \times 10^{-4} = 10^5.
$
So:
$$
6.027 \times 10^5.
$$
$\displaystyle 6.027 \times 10^5$
Using GDC (scientific mode):
$$
\frac{(2.4 \times 10^{-3}) \times (5 \times 10^2)}{4 \times 10^3}
= 3 \times 10^{-4}.
$$
Without GDC:
First multiply
$
(2.4 \times 10^{-3})(5 \times 10^2):
$
$
(2.4 \times 5) \times 10^{(-3 + 2)}
= 12 \times 10^{-1}
= 1.2 \times 10^0
= 1.2.
$
Then divide by
$
4 \times 10^3:
$
$$
\frac{1.2}{4 \times 10^3}
= \left(\frac{1.2}{4}\right) \times 10^{-3}
= 0.3 \times 10^{-3}
= 3 \times 10^{-4}.
$$
$\displaystyle 3 \times 10^{-4}$