Step 1: Write the problem
3x2−3y227x3−8y3⋅6x2+5xy−6y26x2+12xy+6y2
Step 2: Factor all expressions
3x2−3y2=3(x2−y2)=3(x+y)(x−y)
27x3−8y3=(3x−2y)(9x2+6xy+4y2)
6x2+5xy−6y2=(3x+6y)(2x−y)
6x2+12xy+6y2=6(x2+2xy+y2)=6(x+y)2
Step 3: Cancel Common factors in Red
3(x+y)(x−y)(3x−2y)(9x2+6xy+4y2)⋅(3x+6y)(2x−y)6(x+y)2
Let's factor further to find common terms:
(2x−y) and
(x−y) have a common factor of
(x−y) if we write
(2x−y)=2(x−y2).
Similarly,
(3x+6y)=3(x+2y) and
(3x−2y) don't have obvious common factors.
Let's continue with our cancellation:
3(x−y)(3x−2y)(9x2+6xy+4y2)⋅(3x+6y)(2x−y)6(x+y)
Step 4: Simplify further
Without more common factors to cancel, we have:
3(x−y)(3x+6y)(2x−y)6(x+y)(3x−2y)(9x2+6xy+4y2)
3(x−y)(3x+6y)(2x−y)6(x+y)(3x−2y)(9x2+6xy+4y2)=(x−y)(3x+6y)(2x−y)2(x+y)(3x−2y)(9x2+6xy+4y2)
(x−y)(3(x+2y))(2x−y)2(x+y)(3x−2y)(9x2+6xy+4y2)
Final Answer: (x−y)(3(x+2y))(2x−y)2(x+y)(3x−2y)(9x2+6xy+4y2)