Loading [MathJax]/jax/output/CommonHTML/jax.js
Multiplying & Dividing Rational Expressions Practice

Multiplying & Dividing Rational Expressions

Interactive practice with step-by-step solutions

Key Principles for Multiplying Rational Expressions

  1. Factor all numerators and denominators completely.
  2. Divide out (cancel) common factors.
  3. Multiply numerators together and multiply denominators together.

Multiplication Problems (1-28)

Question 1: 5y239x10y
Step 1: Write the problem
5y239x10y
Step 2: Factor terms if needed
The terms are already factored.
Step 3: Cancel Common factors in Red
5y239x10y=5yy39x10y

We can cancel one y from numerator and denominator:

5yy39x10y=5y39x10
Step 4: Multiply remaining terms
5y39x10=5y9x310=45xy30=3xy2
Final Answer: 3xy2
Question 2: 2x3y3z46xz510y5
Step 1: Write the problem
2x3y3z46xz510y5
Step 2: Factor terms
2x3y3z46xz510y5=2x3y3z46xz525y5
Step 3: Cancel Common factors in Red
We can cancel a factor of 2:

2x3y3z46xz525y5=x3y3z46xz55y5

No more common factors to cancel.
Step 4: Multiply remaining terms
x3y3z46xz55y5=x3y6xz53z45y5=6x4yz515z4y5=6x4z515z4y4=6x4z15y4

Simplifying further:

6x4z15y4=2x4z5y4
Final Answer: 2x4z5y4
Question 3: 9y2832x27y
Step 1: Write the problem
9y2832x27y
Step 2: Factor terms
9y2832x27y=32y22325x33y
Step 3: Cancel Common factors in Red
We can cancel y once from numerator and denominator:

32yy2325x33y=32y2325x33
Step 4: Multiply remaining terms
32y2325x33=3225yx2333=932xy827=288xy216=4xy3
Final Answer: 4xy3
Question 4: 2x2y3z312xz46y3
Step 1: Write the problem
2x2y3z312xz46y3
Step 2: Factor terms
2x2y3z312xz46y3=2x2y3z326xz46y3=2x2y3z326xz46y3
Step 3: Cancel Common factors in Red
We can cancel 6 in the second fraction:

2x2y3z326xz46y3=2x2y3z32xz4y3
Step 4: Multiply remaining terms
2x2y3z32xz4y3=2x2y2xz43z3y3=4x3yz43z3y3=4x3z43z3y2=4x3z3y2
Final Answer: 4x3z3y2
Question 5: 3y2510x15y
Step 1: Write the problem
3y2510x15y
Step 2: Factor terms
3y2510x15y=3y2525x35y
Step 3: Cancel Common factors in Red
We can cancel 5 and 3 and one y:

3yy525x35y=y12x5
Step 4: Multiply remaining terms
y12x5=y2x15=2xy5
Final Answer: 2xy5
Question 6: 4x2y2z26xz320y4
Step 1: Write the problem
4x2y2z26xz320y4
Step 2: Factor terms
4x2y2z26xz320y4=22x2y2z26xz3225y4
Step 3: Cancel Common factors in Red
We can cancel 2 from the first fraction and 2² from the second:

22x2y2z26xz3225y4=2x2yz26xz35y4
Step 4: Multiply remaining terms
2x2yz26xz35y4=26x2yxz3z25y4=12x3yz35z2y4=12x3z5y3
Final Answer: 12x3z5y3
Question 7: x+43x+4y9x216y22x2+3x20
Step 1: Write the problem
x+43x+4y9x216y22x2+3x20
Step 2: Factor all expressions
x+4 is already factored
3x+4y=3x+4y is already factored
9x216y2=(3x)2(4y)2=(3x+4y)(3x4y)
2x2+3x20=2x2+8x5x20=2x(x+4)(5)(x+4)=(x+4)(2x5)
Step 3: Cancel Common factors in Red
x+43x+4y(3x+4y)(3x4y)(2x5)(x+4)=13x+4y(3x+4y)(3x4y)2x5

We can also cancel 3x+4y:

13x+4y(3x+4y)(3x4y)2x5=3x4y2x5
Final Answer: 3x4y2x5
Question 8: a210a+21a7a2+a12(a3)2
Step 1: Write the problem
a210a+21a7a2+a12(a3)2
Step 2: Factor all expressions
a210a+21=(a7)(a3)
a7 is already factored
a2+a12=(a+4)(a3)
(a3)2=(a3)(a3)
Step 3: Cancel Common factors in Red
(a7)(a3)a7(a+4)(a3)(a3)(a3)=a31a+4a3=a3(a+4)a3=a+4
Final Answer: a+4
Question 9: x+13x+y9x2y22x2+3x+1
Step 1: Write the problem
x+13x+y9x2y22x2+3x+1
Step 2: Factor all expressions
x+1 is already factored
3x+y is already factored
9x2y2=(3x)2y2=(3x+y)(3xy)
2x2+3x+1=2x2+2x+x+1=2x(x+1)+(x+1)=(x+1)(2x+1)
Step 3: Cancel Common factors in Red
x+13x+y(3x+y)(3xy)(2x+1)(x+1)=13x+y(3x+y)(3xy)2x+1

We can also cancel 3x+y:

13x+y(3x+y)(3xy)2x+1=3xy2x+1
Final Answer: 3xy2x+1
Question 10: a26a+9a3a2+3a18(a3)2
Step 1: Write the problem
a26a+9a3a2+3a18(a3)2
Step 2: Factor all expressions
a26a+9=(a3)2
a3 is already factored
a2+3a18=(a+6)(a3)
(a3)2=(a3)(a3)
Step 3: Cancel Common factors in Red
(a3)(a3)a3(a+6)(a3)(a3)(a3)=a31a+6a3=a3(a+6)a3=a+6
Final Answer: a+6
Question 11: 5x23t29t825x
Step 1: Write the problem
5x23t29t825x
Step 2: Factor terms
5x23t29t825x=5x23t232t852x
Step 3: Cancel Common factors in Red
5x23t232t852x=x23t29t85x

We can also cancel one power of x:

xx3t29t85x=x3t29t85
Step 4: Multiply remaining terms
x3t29t85=x9t83t25=9xt815t2=9xt615

Simplifying further:

9xt615=3xt65
Final Answer: 3xt65
Question 12: 7a310b75b33a
Step 1: Write the problem
7a310b75b33a
Step 2: Factor terms
7a310b75b33a=7a325b75b33a
Step 3: Cancel Common factors in Red
7a325b75b33a=7a32b7b33a

We can also cancel one power of a:

7a2a2b7b33a=7a22b7b33
Step 4: Multiply remaining terms
7a22b7b33=7a2b32b73=7a2b36b7=7a26b4
Final Answer: 7a26b4
Question 13: 3x65xx35x10
Step 1: Write the problem
3x65xx35x10
Step 2: Factor all expressions
3x6=3(x2)
5x=5x is already factored
x3=x3 is already factored
5x10=5(x2)
Step 3: Cancel Common factors in Red
3(x2)5xx35(x2)=35xx35=3x35x5=3x325x=3x225
Final Answer: 3x225
Question 14: 5t34t86t1210t
Step 1: Write the problem
5t34t86t1210t
Step 2: Factor all expressions
5t3=5t3 is already factored
4t8=4(t2)
6t12=6(t2)
10t=10t is already factored
Step 3: Cancel Common factors in Red
5t34(t2)6(t2)10t=5t34610t=5t34610t

We can also simplify 610=35:

5t3435t=5t3345t=15t320t=15t220=3t24
Final Answer: 3t24
Question 15: y2162y+6y+3y4
Step 1: Write the problem
y2162y+6y+3y4
Step 2: Factor all expressions
y216=(y+4)(y4)
2y+6=2(y+3)
y+3 is already factored
y4 is already factored
Step 3: Cancel Common factors in Red
(y+4)(y4)2(y+3)(y+3)(y4)=(y+4)2
Final Answer: y+42
Question 16: m2n24m+4nm+nmn
Step 1: Write the problem
m2n24m+4nm+nmn
Step 2: Factor all expressions
m2n2=(m+n)(mn)
4m+4n=4(m+n)
m+n is already factored
mn is already factored
Step 3: Cancel Common factors in Red
(m+n)(mn)4(m+n)(m+n)(mn)=mn411=mn4
Final Answer: mn4
Question 17: x216x2x24xx2x12
Step 1: Write the problem
x216x2x24xx2x12
Step 2: Factor all expressions
x216=(x+4)(x4)
x2=x2 is already factored
x24x=x(x4)
x2x12=(x+3)(x4)
Step 3: Cancel Common factors in Red
(x+4)(x4)x2x(x4)(x+3)(x4)=(x+4)x2x(x+3)

(x+4)x2x(x+3)=(x+4)xx2(x+3)=x(x+4)x2(x+3)=x+4x(x+3)
Final Answer: x+4x(x+3)
Question 18: y2+10y+25y29y2+3yy+5
Step 1: Write the problem
y2+10y+25y29y2+3yy+5
Step 2: Factor all expressions
y2+10y+25=(y+5)2
y29=(y+3)(y3)
y2+3y=y(y+3)
y+5 is already factored
Step 3: Cancel Common factors in Red
(y+5)(y+5)(y+3)(y3)y(y+3)(y+5)=(y+5)(y3)y1=y(y+5)y3
Final Answer: y(y+5)y3
Question 19: 62tt2+4t+4t3+2t2t89t6
Step 1: Write the problem
62tt2+4t+4t3+2t2t89t6
Step 2: Factor all expressions
62t=2(3t)
t2+4t+4=(t+2)2
t3+2t2=t2(t+2)
t89t6=t6(t29)=t6(t3)(t+3)
Step 3: Cancel Common factors in Red
2(3t)(t+2)2t2(t+2)t6(t3)(t+3)

To handle (3-t), we can rewrite it as -(t-3):

2((t3))(t+2)2t2(t+2)t6(t3)(t+3)=2(t3)(t+2)(t+2)t2t6(t+3)

Canceling the common factor (t-3):

2(t3)(t+2)2t2t6(t3)(t+3)=2(t+2)2t2t6(t+3)
Step 4: Multiply remaining terms
2(t+2)2t2t6(t+3)=2t2(t+2)2t6(t+3)=2t2t6(t+2)2(t+3)=2t4(t+2)2(t+3)
Final Answer: 2t4(t+2)2(t+3)
Question 20: x26x+9124xx69x4x33x2
Step 1: Write the problem
x26x+9124xx69x4x33x2
Step 2: Factor all expressions
x26x+9=(x3)2
124x=4(3x)=4(x3)
x69x4=x4(x29)=x4(x+3)(x3)
x33x2=x2(x3)
Step 3: Cancel Common factors in Red
(x3)24(x3)x4(x+3)(x3)x2(x3)=(x3)4x4(x+3)x2

(x3)4x4(x+3)x2=(x3)x4(x+3)4x2=x2(x3)(x+3)4
Step 4: Simplify further
x2(x3)(x+3)4=x2(x29)4
Final Answer: x2(x29)4

Key Principles for Dividing Rational Expressions

  1. Invert the divisor (the second fraction) and multiply.
  2. Factor all numerators and denominators completely.
  3. Divide out (cancel) common factors.
  4. Multiply numerators together and multiply denominators together.
Question 21: x22x352x33x24x39x7x49
Step 1: Write the problem
x22x352x33x24x39x7x49
Step 2: Factor all expressions
x22x35=(x+5)(x7)
2x33x2=x2(2x3)
4x39x=x(4x29)=x(2x+3)(2x3)
7x49=7(x7)
Step 3: Cancel Common factors in Red
(x+5)(x7)x2(2x3)x(2x+3)(2x3)7(x7)=(x+5)x2(2x3)x(2x+3)7=(x+5)(2x+3)7x
Final Answer: (x+5)(2x+3)7x
Question 22: y210y+9y21y+4y25y36
Step 1: Write the problem
y210y+9y21y+4y25y36
Step 2: Factor all expressions
y210y+9=(y9)(y1)
y21=(y+1)(y1)
y+4 is already factored
y25y36=(y+4)(y9)
Step 3: Cancel Common factors in Red
(y9)(y1)(y+1)(y1)(y+4)(y+4)(y9)=(y9)(y+1)1(y9)=1(y+1)
Final Answer: 1y+1
Question 23: c3+8c54c3c64c5+4c4c22c+4
Step 1: Write the problem
c3+8c54c3c64c5+4c4c22c+4
Step 2: Factor all expressions
c3+8=c3+23=(c+2)(c22c+4)
c54c3=c3(c24)=c3(c+2)(c2)
c64c5+4c4=c4(c24c+4)=c4(c2)2
c22c+4 is already factored
Step 3: Cancel Common factors in Red
(c+2)(c22c+4)c3(c+2)(c2)c4(c2)2(c22c+4)=(c+2)c3(c+2)(c2)c4(c2)21

1c3(c2)c4(c2)21=c4(c2)2c3(c2)=c4(c2)c3=c(c2)1=c(c2)
Final Answer: c(c2)
Question 24: x327x49x2x56x4+9x3x2+3x+9
Step 1: Write the problem
x327x49x2x56x4+9x3x2+3x+9
Step 2: Factor all expressions
x327=(x3)(x2+3x+9)
x49x2=x2(x29)=x2(x+3)(x3)
x56x4+9x3=x3(x26x+9)=x3(x3)2
x2+3x+9 is already factored
Step 3: Cancel Common factors in Red
(x3)(x2+3x+9)x2(x+3)(x3)x3(x3)2(x2+3x+9)=(x3)x2(x+3)(x3)x3(x3)21

1x2(x+3)x3(x3)21=x3(x3)2x2(x+3)=x(x3)2(x+3)
Final Answer: x(x3)2(x+3)
Question 25: a3b33a2+9ab+6b2a2+2ab+b2a2b2
Step 1: Write the problem
a3b33a2+9ab+6b2a2+2ab+b2a2b2
Step 2: Factor all expressions
a3b3=(ab)(a2+ab+b2)
3a2+9ab+6b2=3(a2+3ab+2b2)=3(a+2b)(a+b)
a2+2ab+b2=(a+b)2
a2b2=(a+b)(ab)
Step 3: Cancel Common factors in Red
(ab)(a2+ab+b2)3(a+2b)(a+b)(a+b)2(a+b)(ab)=(a2+ab+b2)3(a+2b)(a+b)1

(a2+ab+b2)(a+b)3(a+2b)=(a2+ab+b2)(a+b)3(a+2b)
Final Answer: (a2+ab+b2)(a+b)3(a+2b)
Question 26: x3+y3x2+2xy3y2x2y23x2+6xy+3y2
Step 1: Write the problem
x3+y3x2+2xy3y2x2y23x2+6xy+3y2
Step 2: Factor all expressions
x3+y3=(x+y)(x2xy+y2)
x2+2xy3y2=(x+3y)(xy)
x2y2=(x+y)(xy)
3x2+6xy+3y2=3(x2+2xy+y2)=3(x+y)2
Step 3: Cancel Common factors in Red
(x+y)(x2xy+y2)(x+3y)(xy)(x+y)(xy)3(x+y)2=(x2xy+y2)(x+3y)13(x+y)

(x2xy+y2)(x+3y)3(x+y)=(x2xy+y2)3(x+3y)(x+y)
Final Answer: x2xy+y23(x+3y)(x+y)
Question 27: 4x29y28x327y34x2+6xy+9y24x2+12xy+9y2
Step 1: Write the problem
4x29y28x327y34x2+6xy+9y24x2+12xy+9y2
Step 2: Factor all expressions
4x29y2=(2x+3y)(2x3y)
8x327y3=(2x3y)(4x2+6xy+9y2)
4x2+6xy+9y2=(2x+3y)2
4x2+12xy+9y2=(2x+3y)2
Step 3: Cancel Common factors in Red
We notice that 4x2+12xy+9y2 factors differently from what was given. Let's double-check:

4x2+12xy+9y2=4x2+12xy+9y2=(2x)2+2(2x)(3y)+(3y)2

This is (2x+3y)2. Let's continue with the correct factorization:

(2x+3y)(2x3y)(2x3y)(4x2+6xy+9y2)(2x+3y)2(2x+3y)2=(2x+3y)(4x2+6xy+9y2)=1(2x+3y)
Final Answer: 12x+3y
Question 28: 3x23y227x38y36x2+5xy6y26x2+12xy+6y2
Step 1: Write the problem
3x23y227x38y36x2+5xy6y26x2+12xy+6y2
Step 2: Factor all expressions
3x23y2=3(x2y2)=3(x+y)(xy)
27x38y3=(3x2y)(9x2+6xy+4y2)
6x2+5xy6y2=(3x+6y)(2xy)
6x2+12xy+6y2=6(x2+2xy+y2)=6(x+y)2
Step 3: Cancel Common factors in Red
3(x+y)(xy)(3x2y)(9x2+6xy+4y2)(3x+6y)(2xy)6(x+y)2

Let's factor further to find common terms:

(2xy) and (xy) have a common factor of (xy) if we write (2xy)=2(xy2).

Similarly, (3x+6y)=3(x+2y) and (3x2y) don't have obvious common factors.

Let's continue with our cancellation:

3(xy)(3x2y)(9x2+6xy+4y2)(3x+6y)(2xy)6(x+y)
Step 4: Simplify further
Without more common factors to cancel, we have:

3(xy)(3x+6y)(2xy)6(x+y)(3x2y)(9x2+6xy+4y2)

3(xy)(3x+6y)(2xy)6(x+y)(3x2y)(9x2+6xy+4y2)=(xy)(3x+6y)(2xy)2(x+y)(3x2y)(9x2+6xy+4y2)

(xy)(3(x+2y))(2xy)2(x+y)(3x2y)(9x2+6xy+4y2)
Final Answer: (xy)(3(x+2y))(2xy)2(x+y)(3x2y)(9x2+6xy+4y2)

Division Problems (29-56)

Question 29: 28p2q4÷4pq45r
Step 1: Write the problem
28p2q4÷4pq45r
Step 2: Convert first term to fraction if needed
28p2q4=28p2q41
Step 3: Invert the divisor and multiply
28p2q41÷4pq45r=28p2q415r4pq4
Step 4: Factor terms
28p2q415r4pq4=47p2q415r4pq4
Step 5: Cancel Common factors in Red
47p2q415r4pq4=7p215rp=75p2rp=35pr1
Final Answer: 35pr
Question 30: r3st÷rs3t3
Step 1: Write the problem
r3st÷rs3t3
Step 2: Invert the divisor and multiply
r3st÷rs3t3=r3stt3rs3
Step 3: Cancel Common factors in Red
r3stt3rs3=r2t2s2
Final Answer: r2t2s2
Question 31: 24e2d4÷3cd45f
Step 1: Write the problem
24e2d4÷3cd45f
Step 2: Convert first term to fraction if needed
24e2d4=24e2d41
Step 3: Invert the divisor and multiply
24e2d41÷3cd45f=24e2d415f3cd4
Step 4: Factor terms
24e2d415f3cd4=24e2d415f3cd4
Step 5: Cancel Common factors in Red
24e2d415f3cd4=24e25f3c=120e2f3c=40e2fc
Final Answer: 40e2fc
Question 32: u5xy÷ux2y3
Step 1: Write the problem
u5xy÷ux2y3
Step 2: Invert the divisor and multiply
u5xy÷ux2y3=u5xyy3ux2
Step 3: Cancel Common factors in Red
u5xyy3ux2=u4y2x
Final Answer: u4y2x
Question 33: m5np÷mn3p4
Step 1: Write the problem
m5np÷mn3p4
Step 2: Invert the divisor and multiply
m5np÷mn3p4=m5npp4mn3
Step 3: Cancel Common factors in Red
m5npp4mn3=m4p3n2
Final Answer: m4p3n2
Question 34: 3x2+4x+13x25x2÷x22x35x2+25x30
Step 1: Write the problem
3x2+4x+13x25x2÷x22x35x2+25x30
Step 2: Factor all expressions
3x2+4x+1=(3x+1)(x+1)
3x25x2=(3x+1)(x2)
x22x3=(x+1)(x3)
5x2+25x30=5(x25x+6)=5(x2)(x3)
Step 3: Invert the divisor and multiply
(3x+1)(x+1)(3x+1)(x2)÷(x+1)(x3)5(x2)(x3)=(3x+1)(x+1)(3x+1)(x2)5(x2)(x3)(x+1)(x3)
Step 4: Cancel Common factors in Red
(3x+1)(x+1)(3x+1)(x2)5(x2)(x3)(x+1)(x3)=1(5)=5
Final Answer: 5
Question 35: 2x2+5x+32x2+7x+6÷x2+6x+55x235x50
Step 1: Write the problem
2x2+5x+32x2+7x+6÷x2+6x+55x235x50
Step 2: Factor all expressions
2x2+5x+3=(2x+3)(x+1)
2x2+7x+6=(2x+3)(x+2)
x2+6x+5=(x+5)(x+1)
5x235x50=5(x2+7x+10)=5(x+5)(x+2)
Step 3: Invert the divisor and multiply
(2x+3)(x+1)(2x+3)(x+2)÷(x+5)(x+1)5(x+5)(x+2)=(2x+3)(x+1)(2x+3)(x+2)5(x+5)(x+2)(x+5)(x+1)
Step 4: Cancel Common factors in Red
(2x+3)(x+1)(2x+3)(x+2)5(x+5)(x+2)(x+5)(x+1)=11(5)=5
Final Answer: 5
Question 36: 30y2+4y12÷6yy2
Step 1: Write the problem
30y2+4y12÷6yy2
Step 2: Factor all expressions
30=30 is already factored
y2+4y12=(y+6)(y2)
6y=6y is already factored
y2=y2 is already factored
Step 3: Invert the divisor and multiply
30(y+6)(y2)÷6yy2=30(y+6)(y2)y26y
Step 4: Cancel Common factors in Red
30(y+6)(y2)(y2)6y=30(y+6)16y=306(y+6)y=5(y+6)y
Final Answer: 5y(y+6)
Question 37: 15y2+2y8÷5yy2
Step 1: Write the problem
15y2+2y8÷5yy2
Step 2: Factor all expressions
15=15 is already factored
y2+2y8=(y+4)(y2)
5y=5y is already factored
y2=y2 is already factored
Step 3: Invert the divisor and multiply
15(y+4)(y2)÷5yy2=15(y+4)(y2)y25y
Step 4: Cancel Common factors in Red
15(y+4)(y2)(y2)5y=15(y+4)15y=155(y+4)y=3(y+4)y
Final Answer: 3y(y+4)
Question 38: x2+3x28x2+4x+4÷x249x25x14
Step 1: Write the problem
x2+3x28x2+4x+4÷x249x25x14
Step 2: Factor all expressions
x2+3x28=(x+7)(x4)
x2+4x+4=(x+2)2
x249=(x+7)(x7)
x25x14=(x+2)(x7)
Step 3: Invert the divisor and multiply
(x+7)(x4)(x+2)2÷(x+7)(x7)(x+2)(x7)=(x+7)(x4)(x+2)2(x+2)(x7)(x+7)(x7)
Step 4: Cancel Common factors in Red
(x+7)(x4)(x+2)(x+2)(x+2)(x7)(x+7)(x7)=(x4)(x+2)1=x4x+2
Final Answer: x4x+2
Question 39: 16a73b5÷8a36b
Step 1: Write the problem
16a73b5÷8a36b
Step 2: Invert the divisor and multiply
16a73b5÷8a36b=16a73b56b8a3
Step 3: Factor terms
16a73b56b8a3=24a73b56b23a3
Step 4: Cancel Common factors in Red
24a73b56b23a3=223a73b56b23a3=223a4a33b56b23a3

2a4a33b56ba3=2a46b3b5=12a4b3b5=4a4b4
Final Answer: 4a4b4
Question 40: 9x58y2÷3x16y9
Step 1: Write the problem
9x58y2÷3x16y9
Step 2: Invert the divisor and multiply
9x58y2÷3x16y9=9x58y216y93x
Step 3: Factor terms
9x58y216y93x=32x523y224y93x
Step 4: Cancel Common factors in Red
32x523y224y93x=33x4x23y224y93x=3x424y923y2=3x42y9y2=6x4y9y2=6x4y7
Final Answer: 6x4y7
Question 41: 3y+15y5÷y+5y2
Step 1: Write the problem
3y+15y5÷y+5y2
Step 2: Factor all expressions
3y+15=3(y+5)
y5=y5 is already factored
y+5=y+5 is already factored
y2=y2 is already factored
Step 3: Invert the divisor and multiply
3(y+5)y5÷y+5y2=3(y+5)y5y2y+5
Step 4: Cancel Common factors in Red
3(y+5)y5y2y+5=3y2y5=3y2y5=3y3
Final Answer: 3y3
Question 42: 6x+12x9÷x+2x3
Step 1: Write the problem
6x+12x9÷x+2x3
Step 2: Factor all expressions
6x+12=6(x+2)
x9=x9 is already factored
x+2=x+2 is already factored
x3=x3 is already factored
Step 3: Invert the divisor and multiply
6(x+2)x9÷x+2x3=6(x+2)x9x3x+2
Step 4: Cancel Common factors in Red
6(x+2)x9x3x+2=6x3x9=6x3x9=6x6
Final Answer: 6x6
Question 43: y29y2÷y5+3y4y+2
Step 1: Write the problem
y29y2÷y5+3y4y+2
Step 2: Factor all expressions
y29=(y+3)(y3)
y2=y2 is already factored
y5+3y4=y4(y+3)
y+2=y+2 is already factored
Step 3: Invert the divisor and multiply
(y+3)(y3)y2÷y4(y+3)y+2=(y+3)(y3)y2y+2y4(y+3)
Step 4: Cancel Common factors in Red
(y+3)(y3)y2y+2y4(y+3)=(y3)y2y+2y4=(y3)(y+2)y6
Final Answer: (y3)(y+2)y6
Question 44: x24x3÷x52x4x+3
Step 1: Write the problem
x24x3÷x52x4x+3
Step 2: Factor all expressions
x24=(x+2)(x2)
x3=x3 is already factored
x52x4=x4(x2)
x+3=x+3 is already factored
Step 3: Invert the divisor and multiply
(x+2)(x2)x3÷x4(x2)x+3=(x+2)(x2)x3x+3x4(x2)
Step 4: Cancel Common factors in Red
(x+2)(x2)x3x+3x4(x2)=(x+2)x3x+3x4=(x+2)(x+3)x7
Final Answer: (x+2)(x+3)x7
Question 45: 4a21a24÷2a1a2
Step 1: Write the problem
4a21a24÷2a1a2
Step 2: Factor all expressions
4a21=(2a+1)(2a1)
a24=(a+2)(a2)
2a1=2a1 is already factored
a2=a2 is already factored
Step 3: Invert the divisor and multiply
(2a+1)(2a1)(a+2)(a2)÷2a1a2=(2a+1)(2a1)(a+2)(a2)a22a1
Step 4: Cancel Common factors in Red
(2a+1)(2a1)(a+2)(a2)(a2)(2a1)=(2a+1)(a+2)
Final Answer: 2a+1a+2
Question 46: 25x24x29÷5x2x3
Step 1: Write the problem
25x24x29÷5x2x3
Step 2: Factor all expressions
25x24=(5x+2)(5x2)
x29=(x+3)(x3)
5x2=5x2 is already factored
x3=x3 is already factored
Step 3: Invert the divisor and multiply
(5x+2)(5x2)(x+3)(x3)÷5x2x3=(5x+2)(5x2)(x+3)(x3)x35x2
Step 4: Cancel Common factors in Red
(5x+2)(5x2)(x+3)(x3)(x3)(5x2)=(5x+2)(x+3)
Final Answer: 5x+2x+3
Question 47: x2y24x+4y÷2y3xx22xy+y2
Step 1: Write the problem
x2y24x+4y÷2y3xx22xy+y2
Step 2: Factor all expressions
x2y2=(x+y)(xy)
4x+4y=4(x+y)
2y3x=1(3x2y)
x22xy+y2=(xy)2
Step 3: Invert the divisor and multiply
(x+y)(xy)4(x+y)÷1(3x2y)(xy)2=(x+y)(xy)4(x+y)(xy)21(3x2y)
Step 4: Cancel Common factors in Red
(x+y)(xy)4(x+y)(xy)(xy)1(3x2y)=(xy)4(xy)21(3x2y)=(xy)34(3x2y)
Final Answer: (xy)34(3x2y)
Question 48: x+yz2z÷x2y2z3z2
Step 1: Write the problem
x+yz2z÷x2y2z3z2
Step 2: Factor all expressions
x+y=x+y is already factored
z2z=z(z1)
x2y2=(x+y)(xy)
z3z2=z2(z1)
Step 3: Invert the divisor and multiply
x+yz(z1)÷(x+y)(xy)z2(z1)=x+yz(z1)z2(z1)(x+y)(xy)
Step 4: Cancel Common factors in Red
(x+y)z(z1)z2(z1)(x+y)(xy)=z2z(xy)=zxy
Final Answer: zxy
Question 49: x216x210x+25÷3x12x5
Step 1: Write the problem
x216x210x+25÷3x12x5
Step 2: Factor all expressions
x216=(x+4)(x4)
x210x+25=(x5)2
3x12=3(x4)
x5=x5 is already factored
Step 3: Invert the divisor and multiply
(x+4)(x4)(x5)2÷3(x4)x5=(x+4)(x4)(x5)2x53(x4)
Step 4: Cancel Common factors in Red
(x+4)(x4)(x5)(x5)(x5)3(x4)=(x+4)(x5)13=x+43(x5)
Final Answer: x+43(x5)
Question 50: y236y28y+16÷3y18y2y12
Step 1: Write the problem
y236y28y+16÷3y18y2y12
Step 2: Factor all expressions
y236=(y+6)(y6)
y28y+16=(y4)2
3y18=3(y6)
y2y12=(y+3)(y4)
Step 3: Invert the divisor and multiply
(y+6)(y6)(y4)2÷3(y6)(y+3)(y4)=(y+6)(y6)(y4)2(y+3)(y4)3(y6)
Step 4: Cancel Common factors in Red
(y+6)(y6)(y4)(y4)(y+3)(y4)3(y6)=(y+6)(y4)(y+3)3=(y+6)(y+3)3(y4)
Final Answer: (y+6)(y+3)3(y4)
Question 51: y3+3yy29÷y2+5y14y2+4y21
Step 1: Write the problem
y3+3yy29÷y2+5y14y2+4y21
Step 2: Factor all expressions
y3+3y=y(y2+3)=y(y2+3)
y29=(y+3)(y3)
y2+5y14=(y+7)(y2)
y2+4y21=(y+7)(y3)
Step 3: Invert the divisor and multiply
y(y2+3)(y+3)(y3)÷(y+7)(y2)(y+7)(y3)=y(y2+3)(y+3)(y3)(y+7)(y3)(y+7)(y2)
Step 4: Cancel Common factors in Red
y(y2+3)(y+3)(y3)(y+7)(y3)(y+7)(y2)=y(y2+3)(y+3)(y2)
Final Answer: y(y2+3)(y+3)(y2)
Question 52: a3+4aa216÷a2+8a+15a2+a20
Step 1: Write the problem
a3+4aa216÷a2+8a+15a2+a20
Step 2: Factor all expressions
a3+4a=a(a2+4)=a(a2+4)
a216=(a+4)(a4)
a2+8a+15=(a+5)(a+3)
a2+a20=(a+5)(a4)
Step 3: Invert the divisor and multiply
a(a2+4)(a+4)(a4)÷(a+5)(a+3)(a+5)(a4)=a(a2+4)(a+4)(a4)(a+5)(a4)(a+5)(a+3)
Step 4: Cancel Common factors in Red
a(a2+4)(a+4)(a4)(a+5)(a4)(a+5)(a+3)=a(a2+4)(a+4)(a+3)
Final Answer: a(a2+4)(a+4)(a+3)
Question 53: x364x3+64÷x216x24x+16
Step 1: Write the problem
x364x3+64÷x216x24x+16
Step 2: Factor all expressions
x364=(x4)(x2+4x+16)
x3+64 cannot be factored further
x216=(x+4)(x4)
x24x+16=(x2)2+12=(x2)2+12 cannot be factored further in real numbers
Step 3: Invert the divisor and multiply
(x4)(x2+4x+16)x3+64÷(x+4)(x4)x24x+16=(x4)(x2+4x+16)x3+64x24x+16(x+4)(x4)
Step 4: Cancel Common factors in Red
(x4)(x2+4x+16)x3+64x24x+16(x+4)(x4)=(x2+4x+16)(x24x+16)(x3+64)(x+4)
Final Answer: (x2+4x+16)(x24x+16)(x3+64)(x+4)
Question 54: 8y32764y31÷4y2916y21
Step 1: Write the problem
8y32764y31÷4y2916y21
Step 2: Factor all expressions
8y327=(2y3)(4y2+6y+9)
64y31=(4y1)(16y2+4y+1)
4y29=(2y+3)(2y3)
16y21=(4y+1)(4y1)
Step 3: Invert the divisor and multiply
(2y3)(4y2+6y+9)(4y1)(16y2+4y+1)÷(2y+3)(2y3)(4y+1)(4y1)=(2y3)(4y2+6y+9)(4y1)(16y2+4y+1)(4y+1)(4y1)(2y+3)(2y3)
Step 4: Cancel Common factors in Red
(2y3)(4y2+6y+9)(4y1)(16y2+4y+1)(4y+1)(4y1)(2y+3)(2y3)=(4y2+6y+9)(4y+1)(16y2+4y+1)(2y+3)
Final Answer: (4y2+6y+9)(4y+1)(16y2+4y+1)(2y+3)
Question 55: 8a3+b32a2+3ab+b2÷8a24ab+2b22a+b
Step 1: Write the problem
8a3+b32a2+3ab+b2÷8a24ab+2b22a+b
Step 2: Factor all expressions
8a3+b3=(2a+b)(4a22ab+b2)
2a2+3ab+b2=(2a+b)(a+b)
8a24ab+2b2=2(4a22ab+b2)
2a+b=2a+b is already factored
Step 3: Invert the divisor and multiply
(2a+b)(4a22ab+b2)(2a+b)(a+b)÷2(4a22ab+b2)2a+b=(2a+b)(4a22ab+b2)(2a+b)(a+b)2a+b2(4a22ab+b2)
Step 4: Cancel Common factors in Red
(2a+b)(4a22ab+b2)(2a+b)(a+b)(2a+b)2(4a22ab+b2)=1(a+b)12=12(a+b)
Final Answer: 12(a+b)
Question 56: x3+8y3x2+2xy+4y2÷x32x2y+4xy28y3x2y
Step 1: Write the problem
x3+8y3x2+2xy+4y2÷x32x2y+4xy28y3x2y
Step 2: Factor all expressions
x3+8y3=(x+2y)(x22xy+4y2)
x2+2xy+4y2=(x+2y)2
x32x2y+4xy28y3=x38y3=(x2y)(x2+2xy+4y2)
x2y=x2y is already factored
Step 3: Invert the divisor and multiply
(x+2y)(x22xy+4y2)(x+2y)2÷(x2y)(x2+2xy+4y2)x2y=(x+2y)(x22xy+4y2)(x+2y)2x2y(x2y)(x2+2xy+4y2)
Step 4: Cancel Common factors in Red
(x+2y)(x22xy+4y2)(x+2y)(x+2y)(x2y)(x2y)(x2+2xy+4y2)=(x22xy+4y2)(x+2y)1(x2+2xy+4y2)

(x22xy+4y2)(x+2y)(x2+2xy+4y2)
Final Answer: (x22xy+4y2)(x+2y)(x2+2xy+4y2)