Table of Contents
ddx[c]=0\frac{d}{dx} [c] = 0
ddx[x]=1\frac{d}{dx} [x] = 1
ddx[u+v]=u′+v′\frac{d}{dx} [u + v] = u’ + v’
ddx[u−v]=u′−v′\frac{d}{dx} [u – v] = u’ – v’
ddx[uv]=u′v+uv′\frac{d}{dx} [uv] = u’v + uv’
ddx[uv]=u′v−uv′v2\frac{d}{dx} \left[\frac{u}{v}\right] = \frac{u’v – uv’}{v^2}
Post Comments
Δ